图书简介
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems which is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practitioners and researchers. The goal of the book is to give the reader, specialist and non/specialist usable and modern mathematical tools in their research and analysis. This new text is intended for graduate students and researchers in applied mathematics, physical sciences and engineering. The careful explanations, accessible writing style, and many illustrations/examples also make it suitable for use as a self/study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. The present, softcover reprint is designed to make this classic textbook available to a wider audience.
I Distributions and their Basic Applications./ 1 Basic Definitions and Operations./ 1.1 The \"delta function\" as viewed by a physicist and an engineer./ 1.2 A rigorous definition of distributions./ 1.3 Singular distributions as limits of regular functions./ 1.4 Derivatives; linear operations./ 1.5 Multiplication by a smooth function; Leibniz formula./ 1.6 Integrals of distributions; the Heaviside function./ 1.7 Distributions of composite arguments./ 1.8 Convolution./ 1.9 The Dirac delta on Rn, lines and surfaces./ 1.10 Linear topological space of distributions./ 1.11 Exercises./ 2 Basic Applications: Rigorous and Pragmatic./ 2.1 Two generic physical examples./ 2.2 Systems governed by ordinary differential equations./ 2.3 One/dimensional waves./ 2.4 Continuity equation./ 2.5 Green?s function of the continuity equation and Lagrangian coordinates./ 2.6 Method of characteristics./ 2.7 Density and concentration of the passive tracer./ 2.8 Incompressible medium./ 2.9 Pragmatic applications: beyond the rigorous theory of distributions./ 2.10 Exercises./ II Integral Transforms and Divergent Series./ 3 Fourier Transform./ 3.1 Definition and elementary properties./ 3.2 Smoothness, inverse transform and convolution./ 3.3 Generalized Fourier transform./ 3.4 Transport equation./ 3.5 Exercises./ 4 Asymptotics of Fourier Transforms./ 4.1 Asymptotic notation, or how to get a camel to pass through a needle?s eye./ 4.2 Riemann/Lebesgue Lemma./ 4.3 Functions with jumps./ 4.4 Gamma function and Fourier transforms of power functions./ 4.5 Generalized Fourier transforms of power functions./ 4.6 Discontinuities of the second kind./ 4.7 Exercises./ 5 Stationary Phase and Related Method./ 5.1 Finding asymptotics: a general scheme./ 5.2 Stationary phase method./ 5.3 Fresnel approximation./ 5.4 Accuracy of the stationary phase method./ 5.5 Method of steepest descent./ 5.6 Exercises./ 6 Singular Integrals and Fractal Calculus./ 6.1 Principal value distribution./ 6.2 Principal value of Cauchy integral./ 6.3 A study of monochromatic wave./ 6.4 The Cauchy formula./ 6.5 The Hilbert transform./ 6.6 Analytic signals./ 6.7 Fourier transform of Heaviside function./ 6.8 Fractal integration./ 6.9 Fractal differentiation./ 6.10 Fractal relaxation./ 6.11 Exercises./ 7 Uncertainty Principle and Wavelet Transforms./ 7.1 Functional Hilbert spaces./ 7.2 Time/frequency localization and the uncertainty principle./ 7.3 Windowed Fourier transform./ 7.4 Continuous wavelet transforms./ 7.5 Haar wavelets and multiresolution analysis./ 7.6 Continuous Daubechies? wavelets./ 7.7 Wavelets and distributions./ 7.8 Exercises./ 8 Summation of Divergent Series and Integrals./ 8.1 Zeno?s \"paradox\" and convergence of infinite series./ 8.2 Summation of divergent series./ 8.3 Tiring Achilles and the principle of infinitesimal relaxation./ 8.4 Achilles chasing the tortoise in presence of head winds./ 8.5 Separation of scales condition./ 8.6 Series of complex exponentials./ 8.7 Periodic Dirac deltas./ 8.8 Poisson summation formula./ 8.9 Summation of divergent geometric series./ 8.10 Shannon?s sampling theorem./ 8.11 Divergent integrals./ 8.12 Exercises./ A Answers and Solutions./ A.1 Chapter 1. Definitions and operations./ A.2 Chapter 2. Basic applications./ A.3 Chapter 3. Fourier transform./ A.4 Chapter 4. Asymptotics of Fourier transforms./ A.5 Chapter 5. Stationary phase and related methods./ A.6 Chapter 6. Singular integrals and fractal calculus./ A.7 Chapter 7. Uncertainty principle and wavelet transform./ A. 8 Chapter 8. Summation of divergent series and integrals./ B Bibliographical Notes.
Trade Policy 买家须知
- 关于产品:
- ● 正版保障:本网站隶属于中国国际图书贸易集团公司,确保所有图书都是100%正版。
- ● 环保纸张:进口图书大多使用的都是环保轻型张,颜色偏黄,重量比较轻。
- ● 毛边版:即书翻页的地方,故意做成了参差不齐的样子,一般为精装版,更具收藏价值。
关于退换货:
- 由于预订产品的特殊性,采购订单正式发订后,买方不得无故取消全部或部分产品的订购。
- 由于进口图书的特殊性,发生以下情况的,请直接拒收货物,由快递返回:
- ● 外包装破损/发错货/少发货/图书外观破损/图书配件不全(例如:光盘等)
并请在工作日通过电话400-008-1110联系我们。
- 签收后,如发生以下情况,请在签收后的5个工作日内联系客服办理退换货:
- ● 缺页/错页/错印/脱线
关于发货时间:
- 一般情况下:
- ●【现货】 下单后48小时内由北京(库房)发出快递。
- ●【预订】【预售】下单后国外发货,到货时间预计5-8周左右,店铺默认中通快递,如需顺丰快递邮费到付。
- ● 需要开具发票的客户,发货时间可能在上述基础上再延后1-2个工作日(紧急发票需求,请联系010-68433105/3213);
- ● 如遇其他特殊原因,对发货时间有影响的,我们会第一时间在网站公告,敬请留意。
关于到货时间:
- 由于进口图书入境入库后,都是委托第三方快递发货,所以我们只能保证在规定时间内发出,但无法为您保证确切的到货时间。
- ● 主要城市一般2-4天
- ● 偏远地区一般4-7天
关于接听咨询电话的时间:
- 010-68433105/3213正常接听咨询电话的时间为:周一至周五上午8:30~下午5:00,周六、日及法定节假日休息,将无法接听来电,敬请谅解。
- 其它时间您也可以通过邮件联系我们:customer@readgo.cn,工作日会优先处理。
关于快递:
- ● 已付款订单:主要由中通、宅急送负责派送,订单进度查询请拨打010-68433105/3213。
本书暂无推荐
本书暂无推荐