Microeconometrics with R

使用R的微观计量经济学

原   价:
1657.33
售   价:
1243.00
优惠
平台大促 低至8折优惠
发货周期:国外库房发货,通常付款后3-5周到货!
作      者
出  版 社
出版时间
2025年02月14日
装      帧
精装
ISBN
9780367554460
复制
页      码
516
语      种
英文
综合评分
暂无评分
我 要 买
- +
库存 100 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
This book is about doing microeconometrics, defined by Cameron and Trivedi as "the analysis of individual-level data on the economic behavior of individuals or firms using regression methods applied to cross-section and panel data" with R. Microeconometrics became increasingly popular in the last decades, thanks to the availability of many individual data sets and to the development of computer performance.R appeared in the late nineties as a clone of S. It became increasingly popular among statisticians, especially in fields where S was widely used. Twenty years ago, using R for doing econometrics analysis required a lot of programming because a lot of core methods of econometrics were not available in R. Nowadays, most of the basic methods described in the book are available in contributed packages. Moreover, the set of packages called the tidyverse developed by RStudio (now Posit) for all the basic tasks of an applied statistician (importing, tidying, transforming and visualizing data sets) makes the use of R faster and easier. The book uses extensively specialized econometrics packages and the tidyverse, and it seeks to demonstrate that the adoption of R as the primary software for an econometrician is a relevant choice.The first part of the book is devoted to the ordinary least squares estimator. Matrix algebra is progressively introduced in this part, and special attention is paid to the interpretation of the estimated coefficients. The second part goes beyond the basic OLS estimator by testing the hypothesis on which this estimator is based and providing more complex estimators relevant when some of these hypotheses are violated. Finally, the third part of the book presents specific estimators devoted to "special" responses, e.g., count, binomial or duration data.Key Features:Many applications using data sets of recent academic works are developedTesting and estimation procedures usin
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个